Indexation d’objets ayant une extension spatiale :
R(*)-Tree et M-Tree

Francois-Xavier Pineau?
1CDS, Observatoire Astronomique de Strasbourg

Réunion Infusion du 24 mai 2013

nnnnnnnnnnnnnnnnnnnnnn

Frangois-Xavier Pineau (CDS) R(*)-tree & M-tree 24/05/2013 1/ 10

Introduction

Requirements and current solutions

@ Simple x-match : k-nn queries and/or small cone searches
Solution : kd-tree (generalization of binary-search in more than 1D)
pros : very fast, can be very simple (one array!)
cons : hardly support updates (= not used in DBMS)
@ Error-based x-match : variable size cone-searches
Solution : kd-tree, remove outliers by box-plot, upper limit on cone radius
pros : very fast, few changes
cons : not exact, not symmetric, if heterogeneous errors?
@ Heterogeneous errors + extended objects x-match
Solution 1 : R-tree, R*-tree
cons : 3D boxes not really adapted for geom on the sphere?
Solution 2 : M-tree
pros : our shapes are circles and ellipses, naturally deals with geom on the
sphere!
@ Heterogeneous errors + extended objects + proper motion x-match
Solution 1 : TPR-tree, TPR*-tree
cons : same as R-tree, R*-tree
Solution 2 : modified M-tree with r(t)

pros : same as M-tree

Frangois-Xavier Pineau (CDS) R(*)-tree & M-tree 24/05/2013

2/10

The R-Tree

The R-tree original paper by Antonin Guttmani (1984) J

@ “R-trees: A Dynamic Index Structure for Spatial Searching”

Principle
@ Object extension approximated by
a covering rectangle (CR)
@ Only leaves contain objects

@ Sub-tree's CR overlaps all the CR
of its sub-elements

Range search
@ Invoke range search on root

@ if sub-tree is not a leaf: for each
elem overlapping the range, invoke
range search on it

@ if sub-tree is a leaf: add

overlapping elements to the result

4

Francois-Xavier Pineau (CDS)

R(*)-tree & M-tree

6 re |

RL| R2

W[Ra L5 [R6 7]
T~ ~

. N
. ., ~, —_
Re | R9 | R10| [R11[R12 R13[R14 RI15[R16 R17 R18 [R19|

Example of a 2D R-tree. Crédits: wikipedia, from
Fig. 3.1 of the original paper.

24/05/2013

3/10

The R-Tree

Building a R-tree

@ When created, the tree root is a leaf

o Add a new entry:

Choose a leaf
choose the sub-tree whose CR needs least enlargement
resolve ties by choosing CR of smallest area

Add record to the leaf
if leaf contains empty space, add new entry
if leaf is full, split it, creating a new leaf

Propagate changes upward
adjust CR of the father
if previous split: add new sub-tree (can cause a node split)
move upward till root is reached

Grow tree taller (if node split propagation caused the root to split)
create a new root
add the two nodes resulting from the split

See on live animated schema on blackboard!

Frangois-Xavier Pineau (CDS) R(*)-tree & M-tree 24/05/2013 4 /10

The R*-Tree

The R*-tree original paper by N. Beckmann et al. (1990)
@ “R*-tree: An Efficient And Robust Access Method for Points and Rectangles”

Principle
@ Same principle as the R-tree
@ Same range search algorithm
@ Almost same insertion algorithm

o Differences from R-tree insertion:

criteria when choosing the sub-tree (overlap enlargement, ...)
criteria when splitting a sub-tree (minimize overlap enlargement, ...)
when splitting, 30% of elements are re-inserted

Frangois-Xavier Pineau (CDS) R(*)-tree & M-tree 24/05/2013 5 /10

R-tree VS R*-Tree

000 Scatter Plot N
File Export Plot Axes Subsets Errors Marker Style ErrorStyle Help File Export Plot Axes Subsets Errors Marker Style Error Style Help
Bel= IS (=R =
o0 ! = TT = level=3 0 = level=3
® | | I = Al . [E
70 Ml 70 2
sofl H L 2 60
B 8| TIT 50 1.75
=i I 8 i 1.75
a0 i T a0
30 = & 20 15
2 15
20 - 20
- 10 H] - 10 1.25
g 1.25 o'
g oL g o
10] A 2 10 2
] 1 & 1] ; 42 1e
20 (A 20 - = =
30 i o . -30 l 1 0.75
I s
40 I ——— IH -a0 = =
50 05 50 2 —[; 05
60 g H L 60 A =
2o i L 0.25 70 0,25
s L= g s
oo Tk Ll o -90 I 1 o
20 120 140 160 180 o 20 40 60 80 100 120 140 160 180
000

40
Main

Dat. Row Subsets —

Table: [1: rtree.test.csv |~

@
(wain |

2 rstree.test.csv| v |

X Ais: [coo_0 [=][4[p] +-[wicth oz [<] [} CIrog X Axis: [co0_0 [+][{]y] +/-|width o2 [+] [} CIvog
¥ avis: [coo 1 [=][(]p] +-|width 112 [=] 4] CIrea i . [~ [4]p] +s-[width 172 [<][p] CIrog
Auxiaviszflevel |~ |[(d Citog CIFiip [MEEM Rainbow| Aux1avis:level |~ |[ap| Cltog CJFiip (MBI Rainbow|
LI 1 I D] [« i I D]
Potential: 20 322 Included: 20 322 Visible: 20 322 || Position: Potential: 20 317 Included: 20 317 Visible: 20 317 | | Position:(34, 94)
Frangois-Xavier Pineau (CDS) R(*)-tree & M-tree 24/05/2013 6 /10

Comparative benchmark

@ Made on my Java implementation, fully in memory
not fully optimized! (fully debugged?)
no parallelization

@ Benchmark setup
200000 2D rectangles

random center (x,y) € ([0, 180], [—90, 90])
random extension (dx, dy) € ([0, 0.4], [0,0.4])

10000 query rectangles (leads to 9931 results in this bench)

| build time (ms) | mean query time (ms)
R-tree 1264 0.0345
R*-tree 37517 0.0146

Remarks
o Contrary to DBMS, no |/O operations here!
o Small tree, lots of queries = R*-tree

@ Large tree, few queries = R-tree
Frangois-Xavier Pineau (CDS) R(*)-tree & M-tree 24/05/2013 7/10

The M-tree original paper by P.Ciaccia et al. (1997)
@ “M-tree: An Efficient Access Method for Similarity Search in Metric Spaces” J

Principles
@ Like the R-tree one, but CR replaced by covering
balls (CB)
@ Just need a distance function for the object it
stores
@ In each sub-tree, distance to the parent is stored

allow to save some computations
P: Parent; C: 'Chl|d; Q: que.ry; O= center; r = Example of a 2D M-tree.
radius; d = distance function Crédits: wikipedia.

[1d(Op, 0a) = d(Op, Oc)| > rc + rq = d(Oc, 0q) > rc + rq|

= no need to compute d(Oc¢, Oy) !
See schema on blackboard! @5

Frangois-Xavier Pineau (CDS) R(*)-tree & M-tree 24/05/2013 8 /10

Benchmark (code V.1!)

@ Fast multi-threading possible

(trick: data stored following a

z-curve)

@ Bench characteristi
Machine: cdsxmatch3
M-tree size: 10000000
Number of queries 1000 000

Cs:

N
Style. Error style. Help

NEENCIES

Nres: 6.4
@ Results for 1 and 24 threads (T):

building time
Dist. 1T 24T fac
Eucl. 65s 3.5s | x18
+ asin 237s 11s | x21
Haver. 736s 32s | x23

querying time (all queries)
Dist. 1T 24T fac
Eucl. 103s 3.4s x30
+ asin 309s 6s | x52
Haver. 463s 10s | x46

e —— e

Latitude Ads: dec | [degrees] -

Potential: 10 143 Includsd: 10 143 Visible: 10 143

Francois-Xavier Pineau (CDS)

R(*)-tree & M-tree

Example of an («, §) M-tree on a random
distribution of sky coordinates.

24/05/2013

[Cn)Y

9/10

Info & Perspectives

Source code

@ M-tree code put in a library

Almost done: refactoring, tests and debug to be done

Currently ~ 2500 lines of code (Metrics = comments excluded)
2 versions:

one storing point-like objects
one storing extended objects

Uses design patterns (e.g. COMPOSITE to manipulate node and leaf)
@ R-tree + R*-tree a2 2200 lines of code (can be factorized!)

Perspectives

@ M-tree can be used for fuzzy word search (Levenshtein distance).
first test show poor performances

computing Levenshtein distance is time consuming!!
change split strategy?!

@ Next implementation: M-tree with r(t) to account for proper motions!!
@ Long term: create index in a file (bulk-loading, ...)?

Frangois-Xavier Pineau (CDS) R(*)-tree & M-tree 24/05/2013 10 / 10

	Introduction
	The R-Tree
	The R*-Tree
	R-tree VS R*-Tree
	M-tree
	Info & Perspectives

