
Indexation d’objets ayant une extension spatiale :
R(*)-Tree et M-Tree

François-Xavier Pineau1

1CDS, Observatoire Astronomique de Strasbourg

Réunion Infusion du 24 mai 2013

François-Xavier Pineau (CDS) R(*)-tree & M-tree 24/05/2013 1 / 10

Introduction

Requirements and current solutions

Simple x-match : k-nn queries and/or small cone searches
I Solution : kd-tree (generalization of binary-search in more than 1D)

F pros : very fast, can be very simple (one array!)
F cons : hardly support updates (⇒ not used in DBMS)

Error-based x-match : variable size cone-searches
I Solution : kd-tree, remove outliers by box-plot, upper limit on cone radius

F pros : very fast, few changes
F cons : not exact, not symmetric, if heterogeneous errors?

Heterogeneous errors + extended objects x-match
I Solution 1 : R-tree, R*-tree

F cons : 3D boxes not really adapted for geom on the sphere?
I Solution 2 : M-tree

F pros : our shapes are circles and ellipses, naturally deals with geom on the
sphere!

Heterogeneous errors + extended objects + proper motion x-match
I Solution 1 : TPR-tree, TPR*-tree

F cons : same as R-tree, R*-tree
I Solution 2 : modified M-tree with r(t)

F pros : same as M-tree

François-Xavier Pineau (CDS) R(*)-tree & M-tree 24/05/2013 2 / 10

The R-Tree

The R-tree original paper by Antonin Guttmani (1984)

“R-trees: A Dynamic Index Structure for Spatial Searching”

Principle

Object extension approximated by
a covering rectangle (CR)

Only leaves contain objects

Sub-tree’s CR overlaps all the CR
of its sub-elements

Range search

Invoke range search on root

if sub-tree is not a leaf: for each
elem overlapping the range, invoke
range search on it

if sub-tree is a leaf: add
overlapping elements to the result

Example of a 2 D R-tree. Crédits: wikipedia, from
Fig. 3.1 of the original paper.

François-Xavier Pineau (CDS) R(*)-tree & M-tree 24/05/2013 3 / 10

The R-Tree

Building a R-tree

When created, the tree root is a leaf

Add a new entry:
I Choose a leaf

F choose the sub-tree whose CR needs least enlargement
F resolve ties by choosing CR of smallest area

I Add record to the leaf
F if leaf contains empty space, add new entry
F if leaf is full, split it, creating a new leaf

I Propagate changes upward
F adjust CR of the father
F if previous split: add new sub-tree (can cause a node split)
F move upward till root is reached

I Grow tree taller (if node split propagation caused the root to split)
F create a new root
F add the two nodes resulting from the split

See on live animated schema on blackboard!

François-Xavier Pineau (CDS) R(*)-tree & M-tree 24/05/2013 4 / 10

The R*-Tree

The R*-tree original paper by N. Beckmann et al. (1990)

“R*-tree: An Efficient And Robust Access Method for Points and Rectangles”

Principle

Same principle as the R-tree

Same range search algorithm

Almost same insertion algorithm

Differences from R-tree insertion:
I criteria when choosing the sub-tree (overlap enlargement, ...)
I criteria when splitting a sub-tree (minimize overlap enlargement, ...)
I when splitting, 30% of elements are re-inserted

François-Xavier Pineau (CDS) R(*)-tree & M-tree 24/05/2013 5 / 10

R-tree VS R*-Tree

François-Xavier Pineau (CDS) R(*)-tree & M-tree 24/05/2013 6 / 10

R-tree VS R*-Tree

Comparative benchmark

Made on my Java implementation, fully in memory
I not fully optimized! (fully debugged?)
I no parallelization

Benchmark setup
I 200 000 2D rectangles

F random center (x , y) ∈ ([0, 180], [−90, 90])
F random extension (dx , dy) ∈ ([0, 0.4], [0, 0.4])

I 10 000 query rectangles (leads to 9 931 results in this bench)

build time (ms) mean query time (ms)
R-tree 1 264 0.0345
R*-tree 37 517 0.0146

Remarks

Contrary to DBMS, no I/O operations here!

Small tree, lots of queries ⇒ R*-tree

Large tree, few queries ⇒ R-tree

François-Xavier Pineau (CDS) R(*)-tree & M-tree 24/05/2013 7 / 10

M-tree

The M-tree original paper by P.Ciaccia et al. (1997)

“M-tree: An Efficient Access Method for Similarity Search in Metric Spaces”

Principles

Like the R-tree one, but CR replaced by covering
balls (CB)

Just need a distance function for the object it
stores

In each sub-tree, distance to the parent is stored
I allow to save some computations
I P: parent; C: child; Q: query; O= center; r =

radius; d = distance function
Example of a 2 D M-tree.
Crédits: wikipedia.

|d(OP,OQ)− d(OP,OC)| > rC + rQ ⇒ d(OC,OQ) > rC + rQ

⇒ no need to compute d(OC ,Oq) !
See schema on blackboard!

François-Xavier Pineau (CDS) R(*)-tree & M-tree 24/05/2013 8 / 10

M-tree

Benchmark (code V.1!)

Fast multi-threading possible
(trick: data stored following a
z-curve)

Bench characteristics:
I Machine: cdsxmatch3
I M-tree size: 10 000 000
I Number of queries 1 000 000
I n̄res : 6.4

Results for 1 and 24 threads (T):
I building time

Dist. 1 T 24 T fac
Eucl. 65 s 3.5 s x18
+ asin 237 s 11 s x21
Haver. 736 s 32 s x23

I querying time (all queries)
Dist. 1 T 24 T fac
Eucl. 103 s 3.4 s x30
+ asin 309 s 6 s x52
Haver. 463 s 10 s x46 Example of an (α, δ) M-tree on a random

distribution of sky coordinates.

François-Xavier Pineau (CDS) R(*)-tree & M-tree 24/05/2013 9 / 10

Info & Perspectives

Source code
M-tree code put in a library

I Almost done: refactoring, tests and debug to be done
I Currently ≈ 2500 lines of code (Metrics ⇒ comments excluded)
I 2 versions:

F one storing point-like objects
F one storing extended objects

I Uses design patterns (e.g. COMPOSITE to manipulate node and leaf)

R-tree + R*-tree ≈ 2200 lines of code (can be factorized!)

Perspectives

M-tree can be used for fuzzy word search (Levenshtein distance).
I first test show poor performances

F computing Levenshtein distance is time consuming!!
F change split strategy?!

Next implementation: M-tree with r(t) to account for proper motions!!

Long term: create index in a file (bulk-loading, ...)?

François-Xavier Pineau (CDS) R(*)-tree & M-tree 24/05/2013 10 / 10

	Introduction
	The R-Tree
	The R*-Tree
	R-tree VS R*-Tree
	M-tree
	Info & Perspectives

